Classification(breast_cancer data and confusion matrix)
[Notice] [ML_7]
Classification(breast_cancer data)
import warnings
# Avoid unnecessary warning output.
warnings.filterwarnings('ignore')
import pandas as pd
import seaborn as sns
from IPython.display import Image
Error
The pitfall of accuracy
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import numpy as np
target: 0: malignant tumor, 1: benign tumor
cancer = load_breast_cancer()
print(cancer['DESCR'])
.. _breast_cancer_dataset:
Breast cancer wisconsin (diagnostic) dataset
--------------------------------------------
**Data Set Characteristics:**
:Number of Instances: 569
:Number of Attributes: 30 numeric, predictive attributes and the class
:Attribute Information:
- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area - 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- symmetry
- fractal dimension ("coastline approximation" - 1)
The mean, standard error, and "worst" or largest (mean of the three
worst/largest values) of these features were computed for each image,
resulting in 30 features. For instance, field 0 is Mean Radius, field
10 is Radius SE, field 20 is Worst Radius.
- class:
- WDBC-Malignant
- WDBC-Benign
:Summary Statistics:
===================================== ====== ======
Min Max
===================================== ====== ======
radius (mean): 6.981 28.11
texture (mean): 9.71 39.28
perimeter (mean): 43.79 188.5
area (mean): 143.5 2501.0
smoothness (mean): 0.053 0.163
compactness (mean): 0.019 0.345
concavity (mean): 0.0 0.427
concave points (mean): 0.0 0.201
symmetry (mean): 0.106 0.304
fractal dimension (mean): 0.05 0.097
radius (standard error): 0.112 2.873
texture (standard error): 0.36 4.885
perimeter (standard error): 0.757 21.98
area (standard error): 6.802 542.2
smoothness (standard error): 0.002 0.031
compactness (standard error): 0.002 0.135
concavity (standard error): 0.0 0.396
concave points (standard error): 0.0 0.053
symmetry (standard error): 0.008 0.079
fractal dimension (standard error): 0.001 0.03
radius (worst): 7.93 36.04
texture (worst): 12.02 49.54
perimeter (worst): 50.41 251.2
area (worst): 185.2 4254.0
smoothness (worst): 0.071 0.223
compactness (worst): 0.027 1.058
concavity (worst): 0.0 1.252
concave points (worst): 0.0 0.291
symmetry (worst): 0.156 0.664
fractal dimension (worst): 0.055 0.208
===================================== ====== ======
:Missing Attribute Values: None
:Class Distribution: 212 - Malignant, 357 - Benign
:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian
:Donor: Nick Street
:Date: November, 1995
This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.
https://goo.gl/U2Uwz2
Features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image.
Separating plane described above was obtained using
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
Construction Via Linear Programming." Proceedings of the 4th
Midwest Artificial Intelligence and Cognitive Science Society,
pp. 97-101, 1992], a classification method which uses linear
programming to construct a decision tree. Relevant features
were selected using an exhaustive search in the space of 1-4
features and 1-3 separating planes.
The actual linear program used to obtain the separating plane
in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear
Programming Discrimination of Two Linearly Inseparable Sets",
Optimization Methods and Software 1, 1992, 23-34].
This database is also available through the UW CS ftp server:
ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/
.. topic:: References
- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction
for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on
Electronic Imaging: Science and Technology, volume 1905, pages 861-870,
San Jose, CA, 1993.
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and
prognosis via linear programming. Operations Research, 43(4), pages 570-577,
July-August 1995.
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques
to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)
163-171.
data = cancer['data']
target = cancer['target']
feature_names=cancer['feature_names']
df = pd.DataFrame(data=data, columns=feature_names)
df['target'] = cancer['target']
df.head()
| mean radius | mean texture | mean perimeter | mean area | mean smoothness | mean compactness | mean concavity | mean concave points | mean symmetry | mean fractal dimension | ... | worst texture | worst perimeter | worst area | worst smoothness | worst compactness | worst concavity | worst concave points | worst symmetry | worst fractal dimension | target | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 17.99 | 10.38 | 122.80 | 1001.0 | 0.11840 | 0.27760 | 0.3001 | 0.14710 | 0.2419 | 0.07871 | ... | 17.33 | 184.60 | 2019.0 | 0.1622 | 0.6656 | 0.7119 | 0.2654 | 0.4601 | 0.11890 | 0 |
| 1 | 20.57 | 17.77 | 132.90 | 1326.0 | 0.08474 | 0.07864 | 0.0869 | 0.07017 | 0.1812 | 0.05667 | ... | 23.41 | 158.80 | 1956.0 | 0.1238 | 0.1866 | 0.2416 | 0.1860 | 0.2750 | 0.08902 | 0 |
| 2 | 19.69 | 21.25 | 130.00 | 1203.0 | 0.10960 | 0.15990 | 0.1974 | 0.12790 | 0.2069 | 0.05999 | ... | 25.53 | 152.50 | 1709.0 | 0.1444 | 0.4245 | 0.4504 | 0.2430 | 0.3613 | 0.08758 | 0 |
| 3 | 11.42 | 20.38 | 77.58 | 386.1 | 0.14250 | 0.28390 | 0.2414 | 0.10520 | 0.2597 | 0.09744 | ... | 26.50 | 98.87 | 567.7 | 0.2098 | 0.8663 | 0.6869 | 0.2575 | 0.6638 | 0.17300 | 0 |
| 4 | 20.29 | 14.34 | 135.10 | 1297.0 | 0.10030 | 0.13280 | 0.1980 | 0.10430 | 0.1809 | 0.05883 | ... | 16.67 | 152.20 | 1575.0 | 0.1374 | 0.2050 | 0.4000 | 0.1625 | 0.2364 | 0.07678 | 0 |
5 rows × 31 columns
pos = df.loc[df['target']==1]
neg = df.loc[df['target']==0]
pos
| mean radius | mean texture | mean perimeter | mean area | mean smoothness | mean compactness | mean concavity | mean concave points | mean symmetry | mean fractal dimension | ... | worst texture | worst perimeter | worst area | worst smoothness | worst compactness | worst concavity | worst concave points | worst symmetry | worst fractal dimension | target | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | 13.540 | 14.36 | 87.46 | 566.3 | 0.09779 | 0.08129 | 0.06664 | 0.047810 | 0.1885 | 0.05766 | ... | 19.26 | 99.70 | 711.2 | 0.14400 | 0.17730 | 0.23900 | 0.12880 | 0.2977 | 0.07259 | 1 |
| 20 | 13.080 | 15.71 | 85.63 | 520.0 | 0.10750 | 0.12700 | 0.04568 | 0.031100 | 0.1967 | 0.06811 | ... | 20.49 | 96.09 | 630.5 | 0.13120 | 0.27760 | 0.18900 | 0.07283 | 0.3184 | 0.08183 | 1 |
| 21 | 9.504 | 12.44 | 60.34 | 273.9 | 0.10240 | 0.06492 | 0.02956 | 0.020760 | 0.1815 | 0.06905 | ... | 15.66 | 65.13 | 314.9 | 0.13240 | 0.11480 | 0.08867 | 0.06227 | 0.2450 | 0.07773 | 1 |
| 37 | 13.030 | 18.42 | 82.61 | 523.8 | 0.08983 | 0.03766 | 0.02562 | 0.029230 | 0.1467 | 0.05863 | ... | 22.81 | 84.46 | 545.9 | 0.09701 | 0.04619 | 0.04833 | 0.05013 | 0.1987 | 0.06169 | 1 |
| 46 | 8.196 | 16.84 | 51.71 | 201.9 | 0.08600 | 0.05943 | 0.01588 | 0.005917 | 0.1769 | 0.06503 | ... | 21.96 | 57.26 | 242.2 | 0.12970 | 0.13570 | 0.06880 | 0.02564 | 0.3105 | 0.07409 | 1 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 558 | 14.590 | 22.68 | 96.39 | 657.1 | 0.08473 | 0.13300 | 0.10290 | 0.037360 | 0.1454 | 0.06147 | ... | 27.27 | 105.90 | 733.5 | 0.10260 | 0.31710 | 0.36620 | 0.11050 | 0.2258 | 0.08004 | 1 |
| 559 | 11.510 | 23.93 | 74.52 | 403.5 | 0.09261 | 0.10210 | 0.11120 | 0.041050 | 0.1388 | 0.06570 | ... | 37.16 | 82.28 | 474.2 | 0.12980 | 0.25170 | 0.36300 | 0.09653 | 0.2112 | 0.08732 | 1 |
| 560 | 14.050 | 27.15 | 91.38 | 600.4 | 0.09929 | 0.11260 | 0.04462 | 0.043040 | 0.1537 | 0.06171 | ... | 33.17 | 100.20 | 706.7 | 0.12410 | 0.22640 | 0.13260 | 0.10480 | 0.2250 | 0.08321 | 1 |
| 561 | 11.200 | 29.37 | 70.67 | 386.0 | 0.07449 | 0.03558 | 0.00000 | 0.000000 | 0.1060 | 0.05502 | ... | 38.30 | 75.19 | 439.6 | 0.09267 | 0.05494 | 0.00000 | 0.00000 | 0.1566 | 0.05905 | 1 |
| 568 | 7.760 | 24.54 | 47.92 | 181.0 | 0.05263 | 0.04362 | 0.00000 | 0.000000 | 0.1587 | 0.05884 | ... | 30.37 | 59.16 | 268.6 | 0.08996 | 0.06444 | 0.00000 | 0.00000 | 0.2871 | 0.07039 | 1 |
357 rows × 31 columns
sample = pd.concat([pos, neg[:5]], sort = True)
x_train, x_test, y_train, y_test = train_test_split(sample.drop('target', 1), sample['target'], random_state = 42 )
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(x_train, y_train)
pred = model.predict(x_test)
(pred == y_test).mean()
0.978021978021978
my_prediction = np.ones(shape=y_test.shape)
(my_prediction == y_test).mean()
0.989010989010989
Confusion matrix
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
confusion_matrix(y_test, pred)
array([[ 1, 0],
[ 2, 88]], dtype=int64)
sns.heatmap(confusion_matrix(y_test, pred), annot = True, cmap = 'Reds')
plt.xlabel('Predict')
plt.ylabel('Actual')
plt.show()
# soruce: https://dojinkimm.github.io
Image('https://dojinkimm.github.io/assets/imgs/ml/handson_3_1.png', width=500)
from sklearn.metrics import precision_score, recall_score
Precision
Positive Prediction Accuracy
TP / (TP + FP)
precision_score(y_test, pred)
1.0
It’s not useful because you get good precision if you judge it unconditionally as positive.
Recall
TP / (TP + FN)
Proportion of positive samples correctly detected.
Also called sensitivity or True Positive Rate (TPR).
recall_score(y_test, pred)
0.9777777777777777
88/90
0.9777777777777777
F1 score
\[2*\frac{precision * recall}{precision + recall}=\frac{TP}{TP+\frac{FN+FP}{2}}\]from sklearn.metrics import f1_score
f1_score(y_test, pred)
0.9887640449438202
댓글남기기