Classification(iris data with Rogistic Regression)
[Notice] [ML_4]
Classification(iris data with Rogistic Regression)
import warnings
# Avoid unnecessary warning output.
warnings.filterwarnings('ignore')
import pandas as pd
iris data set
Classify flower types
from sklearn.datasets import load_iris
iris = load_iris()
-
DESCR
: Shows data set information -
data
: feature data -
feature_names
: column names of feature data -
target
: label data (numeric) -
target_names
: names of labels (character)
print(iris['DESCR'])
.. _iris_dataset: Iris plants dataset -------------------- **Data Set Characteristics:** :Number of Instances: 150 (50 in each of three classes) :Number of Attributes: 4 numeric, predictive attributes and the class :Attribute Information: - sepal length in cm - sepal width in cm - petal length in cm - petal width in cm - class: - Iris-Setosa - Iris-Versicolour - Iris-Virginica :Summary Statistics: ============== ==== ==== ======= ===== ==================== Min Max Mean SD Class Correlation ============== ==== ==== ======= ===== ==================== sepal length: 4.3 7.9 5.84 0.83 0.7826 sepal width: 2.0 4.4 3.05 0.43 -0.4194 petal length: 1.0 6.9 3.76 1.76 0.9490 (high!) petal width: 0.1 2.5 1.20 0.76 0.9565 (high!) ============== ==== ==== ======= ===== ==================== :Missing Attribute Values: None :Class Distribution: 33.3% for each of 3 classes. :Creator: R.A. Fisher :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) :Date: July, 1988 The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken from Fisher's paper. Note that it's the same as in R, but not as in the UCI Machine Learning Repository, which has two wrong data points. This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other. .. topic:: References - Fisher, R.A. "The use of multiple measurements in taxonomic problems" Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to Mathematical Statistics" (John Wiley, NY, 1950). - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis. (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218. - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System Structure and Classification Rule for Recognition in Partially Exposed Environments". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 1, 67-71. - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions on Information Theory, May 1972, 431-433. - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II conceptual clustering system finds 3 classes in the data. - Many, many more ...
data = iris['data']
data[:5]
array([[5.1, 3.5, 1.4, 0.2], [4.9, 3. , 1.4, 0.2], [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2], [5. , 3.6, 1.4, 0.2]])
feature_names = iris['feature_names']
feature_names
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
-
sepal: calyx
-
petal: petals
target = iris['target']
target[:5]
array([0, 0, 0, 0, 0])
iris['target_names']
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
Make DataFrame
df_iris = pd.DataFrame(data, columns=feature_names)
df_iris.head()
sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | |
---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 |
1 | 4.9 | 3.0 | 1.4 | 0.2 |
2 | 4.7 | 3.2 | 1.3 | 0.2 |
3 | 4.6 | 3.1 | 1.5 | 0.2 |
4 | 5.0 | 3.6 | 1.4 | 0.2 |
df_iris['target'] = target
df_iris.head()
sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | target | |
---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | 0 |
1 | 4.9 | 3.0 | 1.4 | 0.2 | 0 |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 0 |
3 | 4.6 | 3.1 | 1.5 | 0.2 | 0 |
4 | 5.0 | 3.6 | 1.4 | 0.2 | 0 |
Visualization
import matplotlib.pyplot as plt
import seaborn as sns
sns.scatterplot('sepal width (cm)', 'sepal length (cm)', hue = 'target', palette = 'muted', data = df_iris)
plt.title('Sepal')
plt.show()
sns.scatterplot('petal width (cm)', 'petal length (cm)', hue = 'target', palette = 'muted', data = df_iris)
plt.title('Petal')
plt.show()
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA
fig = plt.figure(figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
X_reduced = PCA(n_components=3).fit_transform(df_iris.drop('target', 1))
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=df_iris['target'],
cmap=plt.cm.Set1, edgecolor='k', s=40)
ax.set_title("Iris 3D")
ax.set_xlabel("x")
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel("y")
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel("z")
ax.w_zaxis.set_ticklabels([])
plt.show()
from sklearn.model_selection import train_test_split
x_train, x_valid, y_train, y_valid = train_test_split(df_iris.drop('target', 1), df_iris['target'])
x_train.shape, y_train.shape
((112, 4), (112,))
x_valid.shape, y_valid.shape
((38, 4), (38,))
sns.countplot(y_train)
<AxesSubplot:xlabel='target', ylabel='count'>
stratify: evenly distributes the label’s class distribution
x_train, x_valid, y_train, y_valid = train_test_split(df_iris.drop('target', 1), df_iris['target'], stratify = df_iris['target'])
sns.countplot(y_train)
<AxesSubplot:xlabel='target', ylabel='count'>
x_train.shape, y_train.shape
((112, 4), (112,))
x_valid.shape, y_valid.shape
((38, 4), (38,))
Logistic Regression
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(x_train, y_train)
LogisticRegression()
prediction = model.predict(x_valid)
prediction[:5]
array([2, 2, 1, 0, 1])
(prediction == y_valid).mean()
0.9473684210526315
댓글남기기